Skip to the content.

Algorithms Overview and Metadata

We collected 158 time series anomaly detection algorithms from different research areas; Deep Learning, Statistics, Outlier Detection, Signal Analysis, Classic Machine Learning, Data Mining, Stochastic Learning. Some of these algorithms can detect anomalies on multidimensional time series.

Overview

We implemented 71 of the total collection. These implemented algorithms are used in our evaluation. The following table shows all categorized algorithms. Column Implemented shows which algorithms we used in the evaluation.

Research Area Method data type Implemented
Method Name
AE Deep Learning multivariate True
ARIMA Statistics (Regression & Forecasting) univariate True
Bagel Deep Learning univariate True
CBLOF Ourlier Detection multivariate True
COF Ourlier Detection multivariate True
COPOD Ourlier Detection multivariate True
DAE Deep Learning multivariate True
DBStream Ourlier Detection multivariate True
DSPOT Statistics (Regression & Forecasting) univariate True
DWT-MLEAD Signal Analysis univariate True
DeepAnT Deep Learning multivariate True
DeepNAP Deep Learning multivariate True
Donut Deep Learning univariate True
EIF Classic Machine Learning multivariate True
EncDec-AD Deep Learning multivariate True
Ensemble GI Data Mining univariate True
FFT Signal Analysis univariate True
Fast-MCD Statistics (Regression & Forecasting) multivariate True
GrammarViz Data Mining univariate True
HBOS Classic Machine Learning multivariate True
HIF Ourlier Detection multivariate True
HOT SAX Data Mining univariate True
HealthESN Deep Learning univariate True
Hybrid KNN Deep Learning multivariate True
IE-CAE Deep Learning univariate True
IF-LOF Ourlier Detection multivariate True
KNN Classic Machine Learning multivariate True
LOF Ourlier Detection multivariate True
LSTM-AD Deep Learning multivariate True
LSTM-VAE Deep Learning multivariate True
LaserDBN Stochastic Learning multivariate True
Left STAMPi Data Mining univariate True
MSCRED Deep Learning multivariate True
MTAD-GAT Deep Learning multivariate True
MedianMethod Statistics (Regression & Forecasting) univariate True
MultiHMM Stochastic Learning multivariate True
NormA Data Mining univariate True
Normalizing Flows Deep Learning multivariate True
NoveltySVR Classic Machine Learning univariate True
NumentaHTM Deep Learning univariate True
OceanWNN Deep Learning univariate True
OmniAnomaly Deep Learning multivariate True
PCC Classic Machine Learning multivariate True
PCI Statistics (Regression & Forecasting) univariate True
PS-SVM Classic Machine Learning univariate True
PST Data Mining univariate True
RBForest Classic Machine Learning multivariate True
RForest Classic Machine Learning univariate True
RobustPCA Classic Machine Learning multivariate True
S-H-ESD Statistics (Regression & Forecasting) univariate True
SAND Data Mining univariate True
SARIMA Statistics (Regression & Forecasting) univariate True
SR Signal Analysis univariate True
SR-CNN Deep Learning univariate True
SSA Data Mining univariate True
STAMP Data Mining univariate True
STOMP Data Mining univariate True
Series2Graph Data Mining univariate True
Sub-Fast-MCD Statistics (Regression & Forecasting) univariate True
Sub-IF Ourlier Detection univariate True
Sub-LOF Ourlier Detection univariate True
TARZAN Data Mining univariate True
TAnoGAN Deep Learning multivariate True
TSBitmap Data Mining univariate True
Telemanom Deep Learning multivariate True
Torsk Deep Learning multivariate True
Triple ES Statistics (Regression & Forecasting) univariate True
VALMOD Data Mining univariate True
XGBoosting Classic Machine Learning univariate True
iForest Ourlier Detection multivariate True
k-Means Classic Machine Learning multivariate True
AD-LTI Deep Learning multivariate False
AMD Segmentation Statistics (Regression & Forecasting) univariate False
ANODE Statistics (Regression & Forecasting) False
AOSVM Classic Machine Learning univariate False
AR Statistics (Regression & Forecasting) univariate False
ARMA Statistics (Regression & Forecasting) univariate False
BLOF Ourlier Detection False
BoehmerGraph Data Mining False
Box Plot Statistics (Regression & Forecasting) univariate False
CHEB Statistics (Regression & Forecasting) univariate False
CoalESN Deep Learning False
ConInd Statistics (Regression & Forecasting) multivariate False
CxDBN Stochastic Learning multivariate False
DAD Data Mining univariate False
DADS Data Mining univariate False
DILOF Ourlier Detection multivariate False
Deep K-Means Deep Learning False
Deep OCSVM Deep Learning False
DeepLSTM Deep Learning univariate False
DeepPCA Deep Learning False
DissimilarityAlgo Data Mining univariate False
Double ES (Holt's) Statistics (Regression & Forecasting) False
Dynamic State Estimator (DSE) Statistics (Regression & Forecasting) False
EDBN Stochastic Learning False
EM-HMM Stochastic Learning False
EWMA-STR Statistics (Regression & Forecasting) False
Eros-SVMs Classic Machine Learning multivariate False
FuzzyDNBC Stochastic Learning multivariate False
GLA Stochastic Learning univariate False
GeckoFSM Ourlier Detection multivariate False
GridLOF Ourlier Detection False
HMAD Stochastic Learning univariate False
HSDE Ourlier Detection univariate False
HSMM Stochastic Learning univariate False
Hybrid K-means Classic Machine Learning False
I-HMM Stochastic Learning univariate False
ILOF Data Mining multivariate False
K-LOF Ourlier Detection False
KNN (PTSA) Classic Machine Learning False
Kalman Filter Statistics (Regression & Forecasting) False
KnorrSeq2 Data Mining False
LAMP (GPU) Deep Learning False
LOCI/aLOCI Ourlier Detection multivariate False
LSTM (PTSA) Deep Learning False
LSTM-based VAE-GAN Deep Learning multivariate False
MA Statistics (Regression & Forecasting) univariate False
MAD-GAN Deep Learning multivariate False
MCD Statistics (Regression & Forecasting) False
MCOD Ourlier Detection univariate False
MERLIN Data Mining univariate False
MGDD Statistics (Regression & Forecasting) multivariate False
MS-SVDD Classic Machine Learning multivariate False
MoteESN Deep Learning False
MultiHTM Deep Learning multivariate False
NetworkSVM Classic Machine Learning multivariate False
NorM Data Mining univariate False
NorM (SAD) Data Mining False
OC-KFD Classic Machine Learning multivariate False
Online DWT-MLEAD Signal Analysis univariate False
PAD Deep Learning univariate False
PCA Classic Machine Learning multivariate False
Poly (PTSA) Statistics (Regression & Forecasting) univariate False
RADM Deep Learning multivariate False
RPIF False
RUSBoost Classic Machine Learning univariate False
RePAD Statistics (Regression & Forecasting) univariate False
Robust Deep AutoEncoder Deep Learning False
S-SVM Classic Machine Learning univariate False
SALOF Ourlier Detection False
SCRIMP++ Data Mining False
SH-ESD+ Statistics (Regression & Forecasting) univariate False
SLADE-MTS Classic Machine Learning False
SLADE-TS Classic Machine Learning False
STORN Deep Learning univariate False
Simple ES (EWMA) Statistics (Regression & Forecasting) False
SmartSifter Stochastic Learning multivariate False
Sparse AutoEncoder Deep Learning False
Structured Denoising AutoEncoder (StrDAE) Deep Learning False
SurpriseEncoding Data Mining multivariate False
TCN-AE Deep Learning univariate False
TOLF Ourlier Detection False
TwoFinger Data Mining univariate False
U-GMM-HMM Stochastic Learning univariate False
VELC Deep Learning univariate False
Yesterday (PTSA) Statistics (Regression & Forecasting) univariate False
pEWMA Statistics (Regression & Forecasting) False
sequenceMiner Classic Machine Learning univariate False

Implementation Details

More than half of the 71 chosen algorithms had to be reimplemented by ourselves. However, some authors provided algorithm implementations or community versions exist. All implementations can be found in our Github repository.

Method Name Source Code Origin Language License Method Family  
ARIMA own (John Paparrizos and team) Python no license forecasting →Github
AE own Python, Tensorflow MIT reconstruction →Github
Bagel original Python no license reconstruction →Github
CBLOF community (PyOD) Python BSD 2 distance →Github
COF community (PyOD) Python BSD 2 distance →Github
COPOD community (PyOD) Python BSD 2 distribution →Github
DAE own Python, Tensorflow MIT reconstruction →Github
DBStream original R no license distance →Github
DeepAnT own Python, Pytorch no license forecasting →Github
DeepNAP own Python, Pytorch MIT forecasting →Github
Donut original Python, Pytorch no license reconstruction →Github
DSPOT original Python GPL 3.0 distribution →Github
DWT-MLEAD own Python MIT distribution →Github
EIF original Python UIUC trees →Github
EncDec-AD own Python, Pytorch MIT reconstruction →Github
Ensemble GI own Python MIT encoding →Github
Fast-MCD own Python MIT distribution →Github
FFT own Python MIT reconstruction →Github
RForest own Python MIT forecasting →Github
XGBoosting own Python MIT forecasting →Github
GrammarViz original Java GPL 2.0 encoding →Github
HBOS community (PyOD) Python BSD 2 distribution →Github
HealthESN own Python MIT forecasting →Github
HIF original Python GPL 2.0 trees →Github
HOT SAX original Python GPL 2.0 distance →Github
Hybrid KNN own Python, Pytorch MIT distance →Github
IF-LOF own Python MIT trees →Github
iForest community (PyOD) Python BSD 2 trees →Github
IE-CAE own Python, Pytorch MIT reconstruction →Github
k-Means own Python MIT distance →Github
KNN community (PyOD) Python BSD 2 distance →Github
LaserDBN own Python MIT encoding →Github
Left STAMPi original Python BSD distance →Github
LOF community (PyOD) Python BSD 2 distance →Github
LSTM-AD own Python, Pytorch MIT forecasting →Github
LSTM-VAE own Python, Tensorflow MIT reconstruction →Github
MedianMethod own Python MIT forecasting →Github
MSCRED own Python, Tensorflow MIT reconstruction →Github
MTAD-GAT own Python, Pytorch MIT forecasting →Github
MultiHMM own Python MIT encoding →Github
NormA original Python private distance →Github
Normalizing Flows own Python, Pytorch MIT distribution →Github
NoveltySVR own Python GPL 3.0 forecasting →Github
NumentaHTM original Python AGPL forecasting →Github
OceanWNN own Python, Pytorch MIT forecasting →Github
OmniAnomaly original Python, Tensorflow MIT reconstruction →Github
PCC community (PyOD) Python BSD 2 reconstruction →Github
PCI own Python MIT reconstruction →Github
PS-SVM own Python MIT distance →Github
PST own R GPL encoding →Github
RBForest own Python MIT forecasting →Github
RobustPCA community Python MIT reconstruction →Github
S-H-ESD own R GPL 3.0 distribution →Github
SAND original Python private distance →Github
SARIMA own Python BSD 3.0 forecasting →Github
Series2Graph original Python private distance →Github
SR original Python MIT reconstruction →Github
SR-CNN original Python, Pytorch MIT reconstruction →Github
SSA own (John Paparrizos and team) Python no license distance →Github
STAMP original R Apache distance →Github
STOMP original R Apache distance →Github
Sub-Fast-MCD own Python MIT distribution →Github
Sub-IF own Python MIT trees →Github
Sub-LOF own Python MIT distance →Github
TAnoGAN own Python, Pytorch no license reconstruction →Github
TARZAN original Python no license encoding →Github
Telemanom original Python, Tensorflow Caltech forecasting →Github
Torsk original Python, Pytorch no license forecasting →Github
Triple ES own Python MIT forecasting →Github
TSBitmap community Python no license encoding →Github
VALMOD original R Apache distance →Github

Parameterization

After an independent parameter search, we conducted the experiments with the following parameters. Some parameters depend on data set properties.

ARIMA

Parameter Value
window_size 1.0 dataset period size
max_lag 10% of dataset length
p_start 1
q_start 1
max_p 5
max_q 5
differencing_degree 1
distance_metric twed
random_state 42

AE

Parameter Value
latent_size 32
epochs 500
learning_rate 0.001
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
random_state 42

Bagel

Parameter Value
window_size 2.0 dataset period size
latent_size 6
hidden_layer_shape [100, 100]
dropout 0.1
cuda False
epochs 500
batch_size 64
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
random_state 42

CBLOF

Parameter Value
n_clusters 50
alpha default
beta default
use_weights default
random_state 42
n_jobs 1

COF

Parameter Value
n_neighbors 50
random_state 42

COPOD

Parameter Value
random_state 42

DAE

Parameter Value
latent_size 32
epochs 500
learning_rate 0.001
noise_ratio 0.1
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
random_state 42

DBStream

Parameter Value
window_size 1.0 dataset period size
radius 1.3
lambda 0.001
distance_metric euclidean
shared_density True
n_clusters 30
alpha 0.5
min_weight 0
random_state 42

DeepAnT

Parameter Value
epochs 500
window_size 0.5 dataset period size
prediction_window_size 50
learning_rate 0.001
batch_size 64
random_state 42
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10

DeepNAP

Parameter Value
anomaly_window_size max anomaly length
partial_sequence_length 3
lstm_layers 1
rnn_hidden_size 200
dropout 0.5
linear_hidden_size 100
batch_size 64
validation_batch_size 64
epochs 500
learning_rate 0.001
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
random_state 42

Donut

Parameter Value
window_size 1.0 dataset period size
latent_size 5
regularization 0.001
linear_hidden_size 130
epochs 500
random_state 42

DSPOT

Parameter Value
q default
n_init 1000
level 0.99
up True
down True
alert default
bounded True
max_excess 200
random_state 42

DWT-MLEAD

Parameter Value
start_level 3
quantile_epsilon 0.1
random_state 42

EIF

Parameter Value
n_trees 500
max_samples None
extension_level None
limit None
random_state 42

EncDec-AD

Parameter Value
lstm_layers 3
anomaly_window_size max anomaly length
latent_size -30% default value
batch_size 64
validation_batch_size 64
epochs 500
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
learning_rate 0.001
random_state 42
window_size 1.0 dataset period size
test_batch_size 64

Ensemble GI

Parameter Value
anomaly_window_size max anomaly length
n_estimators 500
max_paa_transform_size 20
max_alphabet_size 10
selectivity 0.8
random_state 42
n_jobs 1
window_method sliding

Fast-MCD

Parameter Value
store_precision True
support_fraction default
random_state 42

FFT

Parameter Value
fft_parameters 3
context_window_size 5
local_outlier_threshold 0.78
max_anomaly_window_size max anomaly length
max_sign_change_distance 20
random_state 42

RForest

Parameter Value
train_window_size 500
n_trees 500
max_features_method auto
bootstrap True
max_samples None
random_state 42
verbose 0
n_jobs 1
max_depth 4
min_samples_split 2
min_samples_leaf 1

XGBoosting

Parameter Value
train_window_size 500
n_estimators 500
learning_rate 0.001
booster gbtree
tree_method auto
n_trees 500
max_depth 4
max_samples None
colsample_bytree None
colsample_bylevel None
colsample_bynode None
random_state 42
verbose 0
n_jobs 1

GrammarViz

Parameter Value
anomaly_window_size max anomaly length
paa_transform_size 5
alphabet_size 6
normalization_threshold 0.01
random_state 42

HBOS

Parameter Value
n_bins 20
alpha default
bin_tol default
random_state 42

HealthESN

Parameter Value
linear_hidden_size default
prediction_window_size 50
connectivity default
spectral_radius default
activation default
random_state 42

HIF

Parameter Value
n_trees 500
max_samples None
random_state 42

HOT SAX

Parameter Value
num_discords None
anomaly_window_size max anomaly length
paa_transform_size 3
alphabet_size 3
normalization_threshold 0.01
random_state 42

Hybrid KNN

Parameter Value
linear_layer_shape default
split 0.8
anomaly_window_size max anomaly length
batch_size 64
test_batch_size 64
epochs 500
early_stopping_delta 0.05
early_stopping_patience 10
learning_rate 0.001
n_neighbors 10
n_estimators 500
random_state 42

IF-LOF

Parameter Value
n_trees 500
max_samples default
n_neighbors 50
alpha default
m default
random_state 42

iForest

Parameter Value
n_trees 500
max_samples None
max_features 1.0
bootstrap false
random_state 42
verbose 0
n_jobs 1

IE-CAE

Parameter Value
anomaly_window_size max anomaly length
kernel_size default
num_kernels 32
latent_size 100
leaky_relu_alpha 0.03
batch_size 64
test_batch_size 64
learning_rate 0.001
epochs 500
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
random_state 42

k-Means

Parameter Value
n_clusters 50
anomaly_window_size max anomaly length
stride 1
n_jobs 1
random_state 42

KNN

Parameter Value
n_neighbors 50
leaf_size 20
method default
radius default
distance_metric_order 2
n_jobs 1
random_state 42

LaserDBN

Parameter Value
timesteps 2
n_bins 10
random_state 42

Left STAMPi

Parameter Value
anomaly_window_size max anomaly length
n_init_train 10% of dataset length or until first anomaly
random_state 42

LOF

Parameter Value
n_neighbors 50
leaf_size 20
distance_metric_order 2
n_jobs 1
random_state 42

LSTM-AD

Parameter Value
lstm_layers 1
split 0.8
window_size 2.0 dataset period size
prediction_window_size 50
batch_size 64
validation_batch_size 64
epochs 500
early_stopping_delta 0.05
early_stopping_patience 10
learning_rate 0.001
random_state 42
test_batch_size 64

LSTM-VAE

Parameter Value
rnn_hidden_size 5
latent_size 5
learning_rate 0.001
batch_size 64
epochs 500
window_size 1.0 dataset period size
lstm_layers 10
early_stopping_delta 0.05
early_stopping_patience 10

MedianMethod

Parameter Value
neighbourhood_size 2.0 dataset period size
random_state 42

MSCRED

Parameter Value
windows default
gap_time 10
window_size 1.0 dataset period size
batch_size 64
learning_rate 0.001
epochs 500
early_stopping_patience 10
early_stopping_delta 0.05
split 0.8
test_batch_size 64
random_state 42

MTAD-GAT

Parameter Value
mag_window_size 40
score_window_size 52
threshold 6
context_window_size 30
kernel_size 7
learning_rate 0.001
epochs 500
batch_size 64
window_size 2.0 dataset period size
gamma 0.8
latent_size 5
linear_layer_shape [5, 5, 5]
early_stopping_patience 10
early_stopping_delta 0.05
split 0.8
random_state 42

MultiHMM

Parameter Value
discretizer choquet
n_bins 5
random_state 42

NormA

Parameter Value
anomaly_window_size max anomaly length
normal_model_percentage 0.5
random_state 42

Normalizing Flows

Parameter Value
n_hidden_features_factor 1.0
hidden_layer_shape [100, 100]
window_size 1.0 dataset period size
split 0.8
epochs 500
batch_size 64
test_batch_size 64
teacher_epochs 100
distillation_iterations 100
percentile 0.05
early_stopping_patience 10
early_stopping_delta 0.05
random_state 42

NoveltySVR

Parameter Value
n_init_train 10% of dataset length or until first anomaly
forgetting_time None
train_window_size 500
anomaly_window_size max anomaly length
lower_suprise_bound None
scaling standard
epsilon 0.1
verbose 0
C 1.0
kernel rbf
degree 3
gamma None
coef0 0.0
tol 0.001
stabilized True
random_state 42

NumentaHTM

Parameter Value
encoding_input_width 21
encoding_output_width 75
autoDetectWaitRecords 50
columnCount 2048
numActiveColumnsPerInhArea 50
potentialPct 0.1
synPermConnected 0.1
synPermActiveInc 0.05
synPermInactiveDec 0.01
cellsPerColumn 32
inputWidth 2048
newSynapseCount 15
maxSynapsesPerSegment 32
maxSegmentsPerCell 128
initialPerm 0.15
permanenceInc 0.1
permanenceDec 0.1
globalDecay 0
maxAge 0
minThreshold 9
activationThreshold 12
pamLength 1
alpha 0.5
random_state 42

OceanWNN

Parameter Value
train_window_size 500
hidden_size 20
batch_size 64
test_batch_size 64
epochs 500
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10
learning_rate 0.001
wavelet_a -3.25
wavelet_k -1.95
wavelet_wbf mexican_hat
wavelet_cs_C 2.275
threshold_percentile 0.99
random_state 42
with_threshold True

OmniAnomaly

Parameter Value
latent_size 4
rnn_hidden_size 100
window_size 1.0 dataset period size
linear_hidden_size 100
nf_layers 5
epochs 500
split 0.8
batch_size 64
l2_reg 0.0001
learning_rate 0.001
random_state 42

PCC

Parameter Value
n_components default
n_selected_components default
whiten default
svd_solver auto
tol default
max_iter default
random_state 42

PCI

Parameter Value
window_size 0.5 dataset period size
thresholding_p 0.05
random_state 42

PS-SVM

Parameter Value
embed_dim_range [0.5, 1.0, 1.5] * dataset period size
project_phasespace False
nu 0.5
kernel rbf
gamma None
degree 3
coef0 0.0
tol 0.001
random_state 42

PST

Parameter Value
window_size 1.0 dataset period size
max_depth 4
n_min 1
y_min default
n_bins 5
sim SIMn
random_state 42

RBForest

Parameter Value
train_window_size 500
n_estimators 500
max_features_per_estimator 0.5
n_trees 500
max_features_method auto
bootstrap True
max_samples None
random_state 42
verbose 0
n_jobs 1
max_depth 4
min_samples_split 2
min_samples_leaf 1

RobustPCA

Parameter Value
max_iter default
random_state 42

S-H-ESD

Parameter Value
max_anomalies dataset contamination
timestamp_unit m
random_state 42

SAND

Parameter Value
anomaly_window_size max anomaly length
n_clusters 50
n_init_train 10% of dataset length or until first anomaly
iter_batch_size 500
alpha 0.5
random_state 42

SARIMA

Parameter Value
train_window_size 500
prediction_window_size 50
max_lag 10% of dataset length
period dataset period size
max_iter default
exhaustive_search False
n_jobs 1
random_state 42

Series2Graph

Parameter Value
window_size 1.0 dataset period size
query_window_size 1.5*window_size
rate 100
random_state 42

SR

Parameter Value
mag_window_size 40
score_window_size 40
window_size 1.0 dataset period size
random_state 42

SR-CNN

Parameter Value
window_size 1.5 dataset period size
random_state 42
step 64
num 10
learning_rate 0.001
epochs 500
batch_size 64
n_jobs 1
split 0.8
early_stopping_delta 0.05
early_stopping_patience 10

SSA

Parameter Value
ep 3
window_size 2.0 dataset period size
rf_method alpha
alpha 0.2
random_state 42

STAMP

Parameter Value
anomaly_window_size max anomaly length
exclusion_zone 0.5
verbose 0
n_jobs 1
random_state 42

STOMP

Parameter Value
anomaly_window_size max anomaly length
exclusion_zone 0.5
verbose 0
n_jobs 1
random_state 42

Sub-Fast-MCD

Parameter Value
store_precision True
support_fraction default
random_state 42

Sub-IF

Parameter Value
window_size 1.0 dataset period size
n_trees 500
max_samples None
max_features 1.0
bootstrap false
random_state 42
verbose 0
n_jobs 1

Sub-LOF

Parameter Value
window_size 1.0 dataset period size
n_neighbors 50
leaf_size 20
distance_metric_order 2
n_jobs 1
random_state 42

TAnoGAN

Parameter Value
epochs 500
cuda False
window_size 1.0 dataset period size
learning_rate 0.001
batch_size 64
n_jobs 1
random_state 42
early_stopping_patience 10
early_stopping_delta 0.05
split 0.8
iterations 25

TARZAN

Parameter Value
random_state 42
anomaly_window_size max anomaly length
alphabet_size 4

Telemanom

Parameter Value
batch_size 64
smoothing_window_size 30
smoothing_perc 0.05
error_buffer 100
dropout 0.5
lstm_batch_size 64
epochs 500
split 0.8
early_stopping_patience 10
early_stopping_delta 0.05
window_size 1.5 dataset period size
prediction_window_size 50
p 0.17
random_state 42

Torsk

Parameter Value
input_map_size 100
input_map_scale 0.125
context_window_size 10
train_window_size 100
prediction_window_size 5
transient_window_size 20% of train_window_size
spectral_radius 2.0
density 0.01
reservoir_representation sparse
imed_loss False
train_method pinv_svd
tikhonov_beta None
verbose 0
scoring_small_window_size 10
scoring_large_window_size 100
random_state 42

Triple ES

Parameter Value
train_window_size 500
period dataset period size
trend add
seasonal add
random_state 42

TSBitmap

Parameter Value
feature_window_size 500
lead_window_size 200
lag_window_size 500
alphabet_size 4
level_size 2
compression_ratio 1
random_state 42

VALMOD

Parameter Value
min_anomaly_window_size 1.0 dataset period size
max_anomaly_window_size 2.0 dataset period size
heap_size 50
exclusion_zone 0.5
verbose 0
random_state 42