We collected 158 time series anomaly detection algorithms from different research areas; Deep Learning, Statistics, Outlier Detection, Signal Analysis, Classic Machine Learning, Data Mining, Stochastic Learning. Some of these algorithms can detect anomalies on multidimensional time series.
Overview
We implemented 71 of the total collection. These implemented algorithms are used in our evaluation. The following table shows all categorized algorithms. Column Implemented shows which algorithms we used in the evaluation.
|
Research Area |
Method data type |
Implemented |
Method Name |
|
|
|
AE |
Deep Learning |
multivariate |
True |
ARIMA |
Statistics (Regression & Forecasting) |
univariate |
True |
Bagel |
Deep Learning |
univariate |
True |
CBLOF |
Ourlier Detection |
multivariate |
True |
COF |
Ourlier Detection |
multivariate |
True |
COPOD |
Ourlier Detection |
multivariate |
True |
DAE |
Deep Learning |
multivariate |
True |
DBStream |
Ourlier Detection |
multivariate |
True |
DSPOT |
Statistics (Regression & Forecasting) |
univariate |
True |
DWT-MLEAD |
Signal Analysis |
univariate |
True |
DeepAnT |
Deep Learning |
multivariate |
True |
DeepNAP |
Deep Learning |
multivariate |
True |
Donut |
Deep Learning |
univariate |
True |
EIF |
Classic Machine Learning |
multivariate |
True |
EncDec-AD |
Deep Learning |
multivariate |
True |
Ensemble GI |
Data Mining |
univariate |
True |
FFT |
Signal Analysis |
univariate |
True |
Fast-MCD |
Statistics (Regression & Forecasting) |
multivariate |
True |
GrammarViz |
Data Mining |
univariate |
True |
HBOS |
Classic Machine Learning |
multivariate |
True |
HIF |
Ourlier Detection |
multivariate |
True |
HOT SAX |
Data Mining |
univariate |
True |
HealthESN |
Deep Learning |
univariate |
True |
Hybrid KNN |
Deep Learning |
multivariate |
True |
IE-CAE |
Deep Learning |
univariate |
True |
IF-LOF |
Ourlier Detection |
multivariate |
True |
KNN |
Classic Machine Learning |
multivariate |
True |
LOF |
Ourlier Detection |
multivariate |
True |
LSTM-AD |
Deep Learning |
multivariate |
True |
LSTM-VAE |
Deep Learning |
multivariate |
True |
LaserDBN |
Stochastic Learning |
multivariate |
True |
Left STAMPi |
Data Mining |
univariate |
True |
MSCRED |
Deep Learning |
multivariate |
True |
MTAD-GAT |
Deep Learning |
multivariate |
True |
MedianMethod |
Statistics (Regression & Forecasting) |
univariate |
True |
MultiHMM |
Stochastic Learning |
multivariate |
True |
NormA |
Data Mining |
univariate |
True |
Normalizing Flows |
Deep Learning |
multivariate |
True |
NoveltySVR |
Classic Machine Learning |
univariate |
True |
NumentaHTM |
Deep Learning |
univariate |
True |
OceanWNN |
Deep Learning |
univariate |
True |
OmniAnomaly |
Deep Learning |
multivariate |
True |
PCC |
Classic Machine Learning |
multivariate |
True |
PCI |
Statistics (Regression & Forecasting) |
univariate |
True |
PS-SVM |
Classic Machine Learning |
univariate |
True |
PST |
Data Mining |
univariate |
True |
RBForest |
Classic Machine Learning |
multivariate |
True |
RForest |
Classic Machine Learning |
univariate |
True |
RobustPCA |
Classic Machine Learning |
multivariate |
True |
S-H-ESD |
Statistics (Regression & Forecasting) |
univariate |
True |
SAND |
Data Mining |
univariate |
True |
SARIMA |
Statistics (Regression & Forecasting) |
univariate |
True |
SR |
Signal Analysis |
univariate |
True |
SR-CNN |
Deep Learning |
univariate |
True |
SSA |
Data Mining |
univariate |
True |
STAMP |
Data Mining |
univariate |
True |
STOMP |
Data Mining |
univariate |
True |
Series2Graph |
Data Mining |
univariate |
True |
Sub-Fast-MCD |
Statistics (Regression & Forecasting) |
univariate |
True |
Sub-IF |
Ourlier Detection |
univariate |
True |
Sub-LOF |
Ourlier Detection |
univariate |
True |
TARZAN |
Data Mining |
univariate |
True |
TAnoGAN |
Deep Learning |
multivariate |
True |
TSBitmap |
Data Mining |
univariate |
True |
Telemanom |
Deep Learning |
multivariate |
True |
Torsk |
Deep Learning |
multivariate |
True |
Triple ES |
Statistics (Regression & Forecasting) |
univariate |
True |
VALMOD |
Data Mining |
univariate |
True |
XGBoosting |
Classic Machine Learning |
univariate |
True |
iForest |
Ourlier Detection |
multivariate |
True |
k-Means |
Classic Machine Learning |
multivariate |
True |
AD-LTI |
Deep Learning |
multivariate |
False |
AMD Segmentation |
Statistics (Regression & Forecasting) |
univariate |
False |
ANODE |
Statistics (Regression & Forecasting) |
|
False |
AOSVM |
Classic Machine Learning |
univariate |
False |
AR |
Statistics (Regression & Forecasting) |
univariate |
False |
ARMA |
Statistics (Regression & Forecasting) |
univariate |
False |
BLOF |
Ourlier Detection |
|
False |
BoehmerGraph |
Data Mining |
|
False |
Box Plot |
Statistics (Regression & Forecasting) |
univariate |
False |
CHEB |
Statistics (Regression & Forecasting) |
univariate |
False |
CoalESN |
Deep Learning |
|
False |
ConInd |
Statistics (Regression & Forecasting) |
multivariate |
False |
CxDBN |
Stochastic Learning |
multivariate |
False |
DAD |
Data Mining |
univariate |
False |
DADS |
Data Mining |
univariate |
False |
DILOF |
Ourlier Detection |
multivariate |
False |
Deep K-Means |
Deep Learning |
|
False |
Deep OCSVM |
Deep Learning |
|
False |
DeepLSTM |
Deep Learning |
univariate |
False |
DeepPCA |
Deep Learning |
|
False |
DissimilarityAlgo |
Data Mining |
univariate |
False |
Double ES (Holt's) |
Statistics (Regression & Forecasting) |
|
False |
Dynamic State Estimator (DSE) |
Statistics (Regression & Forecasting) |
|
False |
EDBN |
Stochastic Learning |
|
False |
EM-HMM |
Stochastic Learning |
|
False |
EWMA-STR |
Statistics (Regression & Forecasting) |
|
False |
Eros-SVMs |
Classic Machine Learning |
multivariate |
False |
FuzzyDNBC |
Stochastic Learning |
multivariate |
False |
GLA |
Stochastic Learning |
univariate |
False |
GeckoFSM |
Ourlier Detection |
multivariate |
False |
GridLOF |
Ourlier Detection |
|
False |
HMAD |
Stochastic Learning |
univariate |
False |
HSDE |
Ourlier Detection |
univariate |
False |
HSMM |
Stochastic Learning |
univariate |
False |
Hybrid K-means |
Classic Machine Learning |
|
False |
I-HMM |
Stochastic Learning |
univariate |
False |
ILOF |
Data Mining |
multivariate |
False |
K-LOF |
Ourlier Detection |
|
False |
KNN (PTSA) |
Classic Machine Learning |
|
False |
Kalman Filter |
Statistics (Regression & Forecasting) |
|
False |
KnorrSeq2 |
Data Mining |
|
False |
LAMP (GPU) |
Deep Learning |
|
False |
LOCI/aLOCI |
Ourlier Detection |
multivariate |
False |
LSTM (PTSA) |
Deep Learning |
|
False |
LSTM-based VAE-GAN |
Deep Learning |
multivariate |
False |
MA |
Statistics (Regression & Forecasting) |
univariate |
False |
MAD-GAN |
Deep Learning |
multivariate |
False |
MCD |
Statistics (Regression & Forecasting) |
|
False |
MCOD |
Ourlier Detection |
univariate |
False |
MERLIN |
Data Mining |
univariate |
False |
MGDD |
Statistics (Regression & Forecasting) |
multivariate |
False |
MS-SVDD |
Classic Machine Learning |
multivariate |
False |
MoteESN |
Deep Learning |
|
False |
MultiHTM |
Deep Learning |
multivariate |
False |
NetworkSVM |
Classic Machine Learning |
multivariate |
False |
NorM |
Data Mining |
univariate |
False |
NorM (SAD) |
Data Mining |
|
False |
OC-KFD |
Classic Machine Learning |
multivariate |
False |
Online DWT-MLEAD |
Signal Analysis |
univariate |
False |
PAD |
Deep Learning |
univariate |
False |
PCA |
Classic Machine Learning |
multivariate |
False |
Poly (PTSA) |
Statistics (Regression & Forecasting) |
univariate |
False |
RADM |
Deep Learning |
multivariate |
False |
RPIF |
|
|
False |
RUSBoost |
Classic Machine Learning |
univariate |
False |
RePAD |
Statistics (Regression & Forecasting) |
univariate |
False |
Robust Deep AutoEncoder |
Deep Learning |
|
False |
S-SVM |
Classic Machine Learning |
univariate |
False |
SALOF |
Ourlier Detection |
|
False |
SCRIMP++ |
Data Mining |
|
False |
SH-ESD+ |
Statistics (Regression & Forecasting) |
univariate |
False |
SLADE-MTS |
Classic Machine Learning |
|
False |
SLADE-TS |
Classic Machine Learning |
|
False |
STORN |
Deep Learning |
univariate |
False |
Simple ES (EWMA) |
Statistics (Regression & Forecasting) |
|
False |
SmartSifter |
Stochastic Learning |
multivariate |
False |
Sparse AutoEncoder |
Deep Learning |
|
False |
Structured Denoising AutoEncoder (StrDAE) |
Deep Learning |
|
False |
SurpriseEncoding |
Data Mining |
multivariate |
False |
TCN-AE |
Deep Learning |
univariate |
False |
TOLF |
Ourlier Detection |
|
False |
TwoFinger |
Data Mining |
univariate |
False |
U-GMM-HMM |
Stochastic Learning |
univariate |
False |
VELC |
Deep Learning |
univariate |
False |
Yesterday (PTSA) |
Statistics (Regression & Forecasting) |
univariate |
False |
pEWMA |
Statistics (Regression & Forecasting) |
|
False |
sequenceMiner |
Classic Machine Learning |
univariate |
False |
Implementation Details
More than half of the 71 chosen algorithms had to be reimplemented by ourselves. However, some authors provided algorithm implementations or community versions exist. All implementations can be found in our Github repository.
Method Name |
Source Code Origin |
Language |
License |
Method Family |
|
ARIMA |
own (John Paparrizos and team) |
Python |
no license |
forecasting |
→Github |
AE |
own |
Python, Tensorflow |
MIT |
reconstruction |
→Github |
Bagel |
original |
Python |
no license |
reconstruction |
→Github |
CBLOF |
community (PyOD) |
Python |
BSD 2 |
distance |
→Github |
COF |
community (PyOD) |
Python |
BSD 2 |
distance |
→Github |
COPOD |
community (PyOD) |
Python |
BSD 2 |
distribution |
→Github |
DAE |
own |
Python, Tensorflow |
MIT |
reconstruction |
→Github |
DBStream |
original |
R |
no license |
distance |
→Github |
DeepAnT |
own |
Python, Pytorch |
no license |
forecasting |
→Github |
DeepNAP |
own |
Python, Pytorch |
MIT |
forecasting |
→Github |
Donut |
original |
Python, Pytorch |
no license |
reconstruction |
→Github |
DSPOT |
original |
Python |
GPL 3.0 |
distribution |
→Github |
DWT-MLEAD |
own |
Python |
MIT |
distribution |
→Github |
EIF |
original |
Python |
UIUC |
trees |
→Github |
EncDec-AD |
own |
Python, Pytorch |
MIT |
reconstruction |
→Github |
Ensemble GI |
own |
Python |
MIT |
encoding |
→Github |
Fast-MCD |
own |
Python |
MIT |
distribution |
→Github |
FFT |
own |
Python |
MIT |
reconstruction |
→Github |
RForest |
own |
Python |
MIT |
forecasting |
→Github |
XGBoosting |
own |
Python |
MIT |
forecasting |
→Github |
GrammarViz |
original |
Java |
GPL 2.0 |
encoding |
→Github |
HBOS |
community (PyOD) |
Python |
BSD 2 |
distribution |
→Github |
HealthESN |
own |
Python |
MIT |
forecasting |
→Github |
HIF |
original |
Python |
GPL 2.0 |
trees |
→Github |
HOT SAX |
original |
Python |
GPL 2.0 |
distance |
→Github |
Hybrid KNN |
own |
Python, Pytorch |
MIT |
distance |
→Github |
IF-LOF |
own |
Python |
MIT |
trees |
→Github |
iForest |
community (PyOD) |
Python |
BSD 2 |
trees |
→Github |
IE-CAE |
own |
Python, Pytorch |
MIT |
reconstruction |
→Github |
k-Means |
own |
Python |
MIT |
distance |
→Github |
KNN |
community (PyOD) |
Python |
BSD 2 |
distance |
→Github |
LaserDBN |
own |
Python |
MIT |
encoding |
→Github |
Left STAMPi |
original |
Python |
BSD |
distance |
→Github |
LOF |
community (PyOD) |
Python |
BSD 2 |
distance |
→Github |
LSTM-AD |
own |
Python, Pytorch |
MIT |
forecasting |
→Github |
LSTM-VAE |
own |
Python, Tensorflow |
MIT |
reconstruction |
→Github |
MedianMethod |
own |
Python |
MIT |
forecasting |
→Github |
MSCRED |
own |
Python, Tensorflow |
MIT |
reconstruction |
→Github |
MTAD-GAT |
own |
Python, Pytorch |
MIT |
forecasting |
→Github |
MultiHMM |
own |
Python |
MIT |
encoding |
→Github |
NormA |
original |
Python |
private |
distance |
→Github |
Normalizing Flows |
own |
Python, Pytorch |
MIT |
distribution |
→Github |
NoveltySVR |
own |
Python |
GPL 3.0 |
forecasting |
→Github |
NumentaHTM |
original |
Python |
AGPL |
forecasting |
→Github |
OceanWNN |
own |
Python, Pytorch |
MIT |
forecasting |
→Github |
OmniAnomaly |
original |
Python, Tensorflow |
MIT |
reconstruction |
→Github |
PCC |
community (PyOD) |
Python |
BSD 2 |
reconstruction |
→Github |
PCI |
own |
Python |
MIT |
reconstruction |
→Github |
PS-SVM |
own |
Python |
MIT |
distance |
→Github |
PST |
own |
R |
GPL |
encoding |
→Github |
RBForest |
own |
Python |
MIT |
forecasting |
→Github |
RobustPCA |
community |
Python |
MIT |
reconstruction |
→Github |
S-H-ESD |
own |
R |
GPL 3.0 |
distribution |
→Github |
SAND |
original |
Python |
private |
distance |
→Github |
SARIMA |
own |
Python |
BSD 3.0 |
forecasting |
→Github |
Series2Graph |
original |
Python |
private |
distance |
→Github |
SR |
original |
Python |
MIT |
reconstruction |
→Github |
SR-CNN |
original |
Python, Pytorch |
MIT |
reconstruction |
→Github |
SSA |
own (John Paparrizos and team) |
Python |
no license |
distance |
→Github |
STAMP |
original |
R |
Apache |
distance |
→Github |
STOMP |
original |
R |
Apache |
distance |
→Github |
Sub-Fast-MCD |
own |
Python |
MIT |
distribution |
→Github |
Sub-IF |
own |
Python |
MIT |
trees |
→Github |
Sub-LOF |
own |
Python |
MIT |
distance |
→Github |
TAnoGAN |
own |
Python, Pytorch |
no license |
reconstruction |
→Github |
TARZAN |
original |
Python |
no license |
encoding |
→Github |
Telemanom |
original |
Python, Tensorflow |
Caltech |
forecasting |
→Github |
Torsk |
original |
Python, Pytorch |
no license |
forecasting |
→Github |
Triple ES |
own |
Python |
MIT |
forecasting |
→Github |
TSBitmap |
community |
Python |
no license |
encoding |
→Github |
VALMOD |
original |
R |
Apache |
distance |
→Github |
Parameterization
After an independent parameter search, we conducted the experiments with the following parameters. Some parameters depend on data set properties.
ARIMA
Parameter |
Value |
window_size |
1.0 dataset period size |
max_lag |
10% of dataset length |
p_start |
1 |
q_start |
1 |
max_p |
5 |
max_q |
5 |
differencing_degree |
1 |
distance_metric |
twed |
random_state |
42 |
AE
Parameter |
Value |
latent_size |
32 |
epochs |
500 |
learning_rate |
0.001 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
random_state |
42 |
Bagel
Parameter |
Value |
window_size |
2.0 dataset period size |
latent_size |
6 |
hidden_layer_shape |
[100, 100] |
dropout |
0.1 |
cuda |
False |
epochs |
500 |
batch_size |
64 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
random_state |
42 |
CBLOF
Parameter |
Value |
n_clusters |
50 |
alpha |
default |
beta |
default |
use_weights |
default |
random_state |
42 |
n_jobs |
1 |
COF
Parameter |
Value |
n_neighbors |
50 |
random_state |
42 |
COPOD
Parameter |
Value |
random_state |
42 |
DAE
Parameter |
Value |
latent_size |
32 |
epochs |
500 |
learning_rate |
0.001 |
noise_ratio |
0.1 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
random_state |
42 |
DBStream
Parameter |
Value |
window_size |
1.0 dataset period size |
radius |
1.3 |
lambda |
0.001 |
distance_metric |
euclidean |
shared_density |
True |
n_clusters |
30 |
alpha |
0.5 |
min_weight |
0 |
random_state |
42 |
DeepAnT
Parameter |
Value |
epochs |
500 |
window_size |
0.5 dataset period size |
prediction_window_size |
50 |
learning_rate |
0.001 |
batch_size |
64 |
random_state |
42 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
DeepNAP
Parameter |
Value |
anomaly_window_size |
max anomaly length |
partial_sequence_length |
3 |
lstm_layers |
1 |
rnn_hidden_size |
200 |
dropout |
0.5 |
linear_hidden_size |
100 |
batch_size |
64 |
validation_batch_size |
64 |
epochs |
500 |
learning_rate |
0.001 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
random_state |
42 |
Donut
Parameter |
Value |
window_size |
1.0 dataset period size |
latent_size |
5 |
regularization |
0.001 |
linear_hidden_size |
130 |
epochs |
500 |
random_state |
42 |
DSPOT
Parameter |
Value |
q |
default |
n_init |
1000 |
level |
0.99 |
up |
True |
down |
True |
alert |
default |
bounded |
True |
max_excess |
200 |
random_state |
42 |
DWT-MLEAD
Parameter |
Value |
start_level |
3 |
quantile_epsilon |
0.1 |
random_state |
42 |
EIF
Parameter |
Value |
n_trees |
500 |
max_samples |
None |
extension_level |
None |
limit |
None |
random_state |
42 |
EncDec-AD
Parameter |
Value |
lstm_layers |
3 |
anomaly_window_size |
max anomaly length |
latent_size |
-30% default value |
batch_size |
64 |
validation_batch_size |
64 |
epochs |
500 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
learning_rate |
0.001 |
random_state |
42 |
window_size |
1.0 dataset period size |
test_batch_size |
64 |
Ensemble GI
Parameter |
Value |
anomaly_window_size |
max anomaly length |
n_estimators |
500 |
max_paa_transform_size |
20 |
max_alphabet_size |
10 |
selectivity |
0.8 |
random_state |
42 |
n_jobs |
1 |
window_method |
sliding |
Fast-MCD
Parameter |
Value |
store_precision |
True |
support_fraction |
default |
random_state |
42 |
FFT
Parameter |
Value |
fft_parameters |
3 |
context_window_size |
5 |
local_outlier_threshold |
0.78 |
max_anomaly_window_size |
max anomaly length |
max_sign_change_distance |
20 |
random_state |
42 |
RForest
Parameter |
Value |
train_window_size |
500 |
n_trees |
500 |
max_features_method |
auto |
bootstrap |
True |
max_samples |
None |
random_state |
42 |
verbose |
0 |
n_jobs |
1 |
max_depth |
4 |
min_samples_split |
2 |
min_samples_leaf |
1 |
XGBoosting
Parameter |
Value |
train_window_size |
500 |
n_estimators |
500 |
learning_rate |
0.001 |
booster |
gbtree |
tree_method |
auto |
n_trees |
500 |
max_depth |
4 |
max_samples |
None |
colsample_bytree |
None |
colsample_bylevel |
None |
colsample_bynode |
None |
random_state |
42 |
verbose |
0 |
n_jobs |
1 |
GrammarViz
Parameter |
Value |
anomaly_window_size |
max anomaly length |
paa_transform_size |
5 |
alphabet_size |
6 |
normalization_threshold |
0.01 |
random_state |
42 |
HBOS
Parameter |
Value |
n_bins |
20 |
alpha |
default |
bin_tol |
default |
random_state |
42 |
HealthESN
Parameter |
Value |
linear_hidden_size |
default |
prediction_window_size |
50 |
connectivity |
default |
spectral_radius |
default |
activation |
default |
random_state |
42 |
HIF
Parameter |
Value |
n_trees |
500 |
max_samples |
None |
random_state |
42 |
HOT SAX
Parameter |
Value |
num_discords |
None |
anomaly_window_size |
max anomaly length |
paa_transform_size |
3 |
alphabet_size |
3 |
normalization_threshold |
0.01 |
random_state |
42 |
Hybrid KNN
Parameter |
Value |
linear_layer_shape |
default |
split |
0.8 |
anomaly_window_size |
max anomaly length |
batch_size |
64 |
test_batch_size |
64 |
epochs |
500 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
learning_rate |
0.001 |
n_neighbors |
10 |
n_estimators |
500 |
random_state |
42 |
IF-LOF
Parameter |
Value |
n_trees |
500 |
max_samples |
default |
n_neighbors |
50 |
alpha |
default |
m |
default |
random_state |
42 |
iForest
Parameter |
Value |
n_trees |
500 |
max_samples |
None |
max_features |
1.0 |
bootstrap |
false |
random_state |
42 |
verbose |
0 |
n_jobs |
1 |
IE-CAE
Parameter |
Value |
anomaly_window_size |
max anomaly length |
kernel_size |
default |
num_kernels |
32 |
latent_size |
100 |
leaky_relu_alpha |
0.03 |
batch_size |
64 |
test_batch_size |
64 |
learning_rate |
0.001 |
epochs |
500 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
random_state |
42 |
k-Means
Parameter |
Value |
n_clusters |
50 |
anomaly_window_size |
max anomaly length |
stride |
1 |
n_jobs |
1 |
random_state |
42 |
KNN
Parameter |
Value |
n_neighbors |
50 |
leaf_size |
20 |
method |
default |
radius |
default |
distance_metric_order |
2 |
n_jobs |
1 |
random_state |
42 |
LaserDBN
Parameter |
Value |
timesteps |
2 |
n_bins |
10 |
random_state |
42 |
Left STAMPi
Parameter |
Value |
anomaly_window_size |
max anomaly length |
n_init_train |
10% of dataset length or until first anomaly |
random_state |
42 |
LOF
Parameter |
Value |
n_neighbors |
50 |
leaf_size |
20 |
distance_metric_order |
2 |
n_jobs |
1 |
random_state |
42 |
LSTM-AD
Parameter |
Value |
lstm_layers |
1 |
split |
0.8 |
window_size |
2.0 dataset period size |
prediction_window_size |
50 |
batch_size |
64 |
validation_batch_size |
64 |
epochs |
500 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
learning_rate |
0.001 |
random_state |
42 |
test_batch_size |
64 |
LSTM-VAE
Parameter |
Value |
rnn_hidden_size |
5 |
latent_size |
5 |
learning_rate |
0.001 |
batch_size |
64 |
epochs |
500 |
window_size |
1.0 dataset period size |
lstm_layers |
10 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
Parameter |
Value |
neighbourhood_size |
2.0 dataset period size |
random_state |
42 |
MSCRED
Parameter |
Value |
windows |
default |
gap_time |
10 |
window_size |
1.0 dataset period size |
batch_size |
64 |
learning_rate |
0.001 |
epochs |
500 |
early_stopping_patience |
10 |
early_stopping_delta |
0.05 |
split |
0.8 |
test_batch_size |
64 |
random_state |
42 |
MTAD-GAT
Parameter |
Value |
mag_window_size |
40 |
score_window_size |
52 |
threshold |
6 |
context_window_size |
30 |
kernel_size |
7 |
learning_rate |
0.001 |
epochs |
500 |
batch_size |
64 |
window_size |
2.0 dataset period size |
gamma |
0.8 |
latent_size |
5 |
linear_layer_shape |
[5, 5, 5] |
early_stopping_patience |
10 |
early_stopping_delta |
0.05 |
split |
0.8 |
random_state |
42 |
MultiHMM
Parameter |
Value |
discretizer |
choquet |
n_bins |
5 |
random_state |
42 |
NormA
Parameter |
Value |
anomaly_window_size |
max anomaly length |
normal_model_percentage |
0.5 |
random_state |
42 |
Normalizing Flows
Parameter |
Value |
n_hidden_features_factor |
1.0 |
hidden_layer_shape |
[100, 100] |
window_size |
1.0 dataset period size |
split |
0.8 |
epochs |
500 |
batch_size |
64 |
test_batch_size |
64 |
teacher_epochs |
100 |
distillation_iterations |
100 |
percentile |
0.05 |
early_stopping_patience |
10 |
early_stopping_delta |
0.05 |
random_state |
42 |
NoveltySVR
Parameter |
Value |
n_init_train |
10% of dataset length or until first anomaly |
forgetting_time |
None |
train_window_size |
500 |
anomaly_window_size |
max anomaly length |
lower_suprise_bound |
None |
scaling |
standard |
epsilon |
0.1 |
verbose |
0 |
C |
1.0 |
kernel |
rbf |
degree |
3 |
gamma |
None |
coef0 |
0.0 |
tol |
0.001 |
stabilized |
True |
random_state |
42 |
NumentaHTM
Parameter |
Value |
encoding_input_width |
21 |
encoding_output_width |
75 |
autoDetectWaitRecords |
50 |
columnCount |
2048 |
numActiveColumnsPerInhArea |
50 |
potentialPct |
0.1 |
synPermConnected |
0.1 |
synPermActiveInc |
0.05 |
synPermInactiveDec |
0.01 |
cellsPerColumn |
32 |
inputWidth |
2048 |
newSynapseCount |
15 |
maxSynapsesPerSegment |
32 |
maxSegmentsPerCell |
128 |
initialPerm |
0.15 |
permanenceInc |
0.1 |
permanenceDec |
0.1 |
globalDecay |
0 |
maxAge |
0 |
minThreshold |
9 |
activationThreshold |
12 |
pamLength |
1 |
alpha |
0.5 |
random_state |
42 |
OceanWNN
Parameter |
Value |
train_window_size |
500 |
hidden_size |
20 |
batch_size |
64 |
test_batch_size |
64 |
epochs |
500 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
learning_rate |
0.001 |
wavelet_a |
-3.25 |
wavelet_k |
-1.95 |
wavelet_wbf |
mexican_hat |
wavelet_cs_C |
2.275 |
threshold_percentile |
0.99 |
random_state |
42 |
with_threshold |
True |
OmniAnomaly
Parameter |
Value |
latent_size |
4 |
rnn_hidden_size |
100 |
window_size |
1.0 dataset period size |
linear_hidden_size |
100 |
nf_layers |
5 |
epochs |
500 |
split |
0.8 |
batch_size |
64 |
l2_reg |
0.0001 |
learning_rate |
0.001 |
random_state |
42 |
PCC
Parameter |
Value |
n_components |
default |
n_selected_components |
default |
whiten |
default |
svd_solver |
auto |
tol |
default |
max_iter |
default |
random_state |
42 |
PCI
Parameter |
Value |
window_size |
0.5 dataset period size |
thresholding_p |
0.05 |
random_state |
42 |
PS-SVM
Parameter |
Value |
embed_dim_range |
[0.5, 1.0, 1.5] * dataset period size |
project_phasespace |
False |
nu |
0.5 |
kernel |
rbf |
gamma |
None |
degree |
3 |
coef0 |
0.0 |
tol |
0.001 |
random_state |
42 |
PST
Parameter |
Value |
window_size |
1.0 dataset period size |
max_depth |
4 |
n_min |
1 |
y_min |
default |
n_bins |
5 |
sim |
SIMn |
random_state |
42 |
RBForest
Parameter |
Value |
train_window_size |
500 |
n_estimators |
500 |
max_features_per_estimator |
0.5 |
n_trees |
500 |
max_features_method |
auto |
bootstrap |
True |
max_samples |
None |
random_state |
42 |
verbose |
0 |
n_jobs |
1 |
max_depth |
4 |
min_samples_split |
2 |
min_samples_leaf |
1 |
RobustPCA
Parameter |
Value |
max_iter |
default |
random_state |
42 |
S-H-ESD
Parameter |
Value |
max_anomalies |
dataset contamination |
timestamp_unit |
m |
random_state |
42 |
SAND
Parameter |
Value |
anomaly_window_size |
max anomaly length |
n_clusters |
50 |
n_init_train |
10% of dataset length or until first anomaly |
iter_batch_size |
500 |
alpha |
0.5 |
random_state |
42 |
SARIMA
Parameter |
Value |
train_window_size |
500 |
prediction_window_size |
50 |
max_lag |
10% of dataset length |
period |
dataset period size |
max_iter |
default |
exhaustive_search |
False |
n_jobs |
1 |
random_state |
42 |
Series2Graph
Parameter |
Value |
window_size |
1.0 dataset period size |
query_window_size |
1.5*window_size |
rate |
100 |
random_state |
42 |
SR
Parameter |
Value |
mag_window_size |
40 |
score_window_size |
40 |
window_size |
1.0 dataset period size |
random_state |
42 |
SR-CNN
Parameter |
Value |
window_size |
1.5 dataset period size |
random_state |
42 |
step |
64 |
num |
10 |
learning_rate |
0.001 |
epochs |
500 |
batch_size |
64 |
n_jobs |
1 |
split |
0.8 |
early_stopping_delta |
0.05 |
early_stopping_patience |
10 |
SSA
Parameter |
Value |
ep |
3 |
window_size |
2.0 dataset period size |
rf_method |
alpha |
alpha |
0.2 |
random_state |
42 |
STAMP
Parameter |
Value |
anomaly_window_size |
max anomaly length |
exclusion_zone |
0.5 |
verbose |
0 |
n_jobs |
1 |
random_state |
42 |
STOMP
Parameter |
Value |
anomaly_window_size |
max anomaly length |
exclusion_zone |
0.5 |
verbose |
0 |
n_jobs |
1 |
random_state |
42 |
Sub-Fast-MCD
Parameter |
Value |
store_precision |
True |
support_fraction |
default |
random_state |
42 |
Sub-IF
Parameter |
Value |
window_size |
1.0 dataset period size |
n_trees |
500 |
max_samples |
None |
max_features |
1.0 |
bootstrap |
false |
random_state |
42 |
verbose |
0 |
n_jobs |
1 |
Sub-LOF
Parameter |
Value |
window_size |
1.0 dataset period size |
n_neighbors |
50 |
leaf_size |
20 |
distance_metric_order |
2 |
n_jobs |
1 |
random_state |
42 |
TAnoGAN
Parameter |
Value |
epochs |
500 |
cuda |
False |
window_size |
1.0 dataset period size |
learning_rate |
0.001 |
batch_size |
64 |
n_jobs |
1 |
random_state |
42 |
early_stopping_patience |
10 |
early_stopping_delta |
0.05 |
split |
0.8 |
iterations |
25 |
TARZAN
Parameter |
Value |
random_state |
42 |
anomaly_window_size |
max anomaly length |
alphabet_size |
4 |
Telemanom
Parameter |
Value |
batch_size |
64 |
smoothing_window_size |
30 |
smoothing_perc |
0.05 |
error_buffer |
100 |
dropout |
0.5 |
lstm_batch_size |
64 |
epochs |
500 |
split |
0.8 |
early_stopping_patience |
10 |
early_stopping_delta |
0.05 |
window_size |
1.5 dataset period size |
prediction_window_size |
50 |
p |
0.17 |
random_state |
42 |
Torsk
Parameter |
Value |
input_map_size |
100 |
input_map_scale |
0.125 |
context_window_size |
10 |
train_window_size |
100 |
prediction_window_size |
5 |
transient_window_size |
20% of train_window_size |
spectral_radius |
2.0 |
density |
0.01 |
reservoir_representation |
sparse |
imed_loss |
False |
train_method |
pinv_svd |
tikhonov_beta |
None |
verbose |
0 |
scoring_small_window_size |
10 |
scoring_large_window_size |
100 |
random_state |
42 |
Triple ES
Parameter |
Value |
train_window_size |
500 |
period |
dataset period size |
trend |
add |
seasonal |
add |
random_state |
42 |
TSBitmap
Parameter |
Value |
feature_window_size |
500 |
lead_window_size |
200 |
lag_window_size |
500 |
alphabet_size |
4 |
level_size |
2 |
compression_ratio |
1 |
random_state |
42 |
VALMOD
Parameter |
Value |
min_anomaly_window_size |
1.0 dataset period size |
max_anomaly_window_size |
2.0 dataset period size |
heap_size |
50 |
exclusion_zone |
0.5 |
verbose |
0 |
random_state |
42 |